6215 #### Photochromic cards for indication of solar UVR #### K. Schulmeister and M. Weber Austrian Research Center Seibersdorf, Medical Physics Department, Austria #### H. Brusl Austrian Social Insurance for Occupational Risks (AUVA), HUB Department, Austria Abstract. The properties of a number of different types of photochromic cards were determined which might provide an attractive means to roughly indicate the instantaneous erythemal solar UV irradiance. Several parameters which may influence the colour of the cards were examined in outdoor trials under solar UV and indoor trials using a filtered xenon arc lamp. The findings show that the tested cards do not give an appropriate estimation of the effective irradiance due to their spectral sensitivity and their temperature dependence. #### Photochromic cards The five tested erythemal UV irradiance indicator cards are credit card sized and are made out of cardboard. A test field on the cards reversibly alters its colour depending upon the instantaneous irradiance level of UV radiation incident upon the indicator field. Ideally, the change of colour should be related to the erythemally weighted effective irradiance. A low effective irradiance should result in a pale colour of the indicator field, while a high effective irradiance should lead to darkening in the indicator field. The colour change of the indicator field has to be compared with the colour of printed reference fields which are linked to advice on personal protection against solar UV radiation, such as to apply sunscreens with a certain SPF or to seek shade. One of the tested UV irradiance indicator cards is shown in figure 1. Figure 1. Example of a UV irradiance indicator card with indication of the indicator field and the reference fields. Photochromics are used to generate the alteration of colour in the indicator field. The UV radiation causes the photochromics to absorb particular wavelengths in the visible and then change back to the original appearance when the UV source is removed. The back reaction (fading of the colour) can be also driven thermally, by visible light or by a combination of both (Parry et al. 2003). To quantify the colour of the reference fields, the tested cards were photographed with a digital camera (C-3040, Olympus) and evaluated with the software Corel Photo paint. The RGB-colour coordinates and the shades of grey of all reference fields of each card are shown in table 1. Table 1. RGB-colour coordinates and shades of grey values for the reference fields of the tested sun check cards. #### Measurements | eard | reference field | RGB colour coordinates | shades of
grey values | |-----------------|-----------------|------------------------|--------------------------| | | 'nornal' | 135/118/129 | 124 | | | 'attention' | 113/69/102 | 85 | | | 'hazard' | 96/40/83 | 61 | | 200000 | 'low UV' | 217/220/219 | 218 | | 11 1111 | 'medium UV' | 204/198/206 | 200 | | 4 | 'strong UV' | 189/163/185 | 173 | | No. of Contract | 'UV too strong' | 158/102/150 | 124 | | 19 13 15 14 | 'low UV' | 138/152/148 | 147 | | | 'medium UV' | 67/126/134 | 109 | | | 'strong UV' | 26/103/120 | 81 | | | 'UV too strong' | 4/85/105 | 63 | | | 'low UV' | 211/207/203 | 207 | | | 'medium UV' | 192/174/180 | 180 | | 1000000 | 'strong UV' | 175/136/156 | 149 | | | 'UV too strong' | 137/85/128 | 105 | | E SA SE FOR | 'AZ' | 205/208/206 | 206 | | | 'normal' | 182/172/179 | 175 | | 四門。創造 | 'yogun' | 170/128/145 | 142 | | | 'tehlikeli!' | 139/92/128 | 110 | To measure the spectral irradiance on the card, a calibrated double monochromator (DM150, Bentham) and a temperature stabilised photomultiplier tube as detector were used. A plane circular PTFE-diffuser with angular cosine response served as an input optic. The UV index (WHO 2002) was calculated from the spectral irradiance measurements. The colour change of the indicator field was photographed with a digital camera under reproducible lighting conditions. The colour change of the indicator field was quantitatively evaluated with the aid of Corel Photo paint. Additionally, the colour change was visually estimated and compared with the colour of printed reference fields (as the user of the card would do it). With the photographs of the cards and the spectral irradiance measurements it was possible to compare the indicated colours with the UV index (UVI). #### Spectral sensitivity The discoloration of the indicator fields for three different spectral distributions of the radiation that was incident on the card is shown in Table 2. Table 2 shows that the tested UV irradiance indicator cards are mainly sensitive to UVA and show only very little sensitivity to UVB_radiation. When the cards are irradiated with a UVA dominating spectrum (Filter Schott WG 335), a noticeable discoloration of the indicator field occurs at a moderate UV index of 4 which is in accordance with the colour evoked by the spectrum of the laboratory sun (Schott KG 4) at the same UVI. However, a UVB dominating irradiation (Schott WG 280) at a very high UV index of 11 evokes only a minor change and pale colour of the indicator fields. This comparison shows that the spectral sensitivity of the tested cards corresponds badly with the action spectrum for the UV erythema (CIE 1987). According to the action spectrum, UVB is much more effective than UVA in causing erythema. As a consequence, for irradiation with a given UV index, the discoloration of the indicator fields depends on the ratio between UVA and UVB. Table 2. Colour of the indicator fields for different spectral distributions and UV indices. ## Effect of temperature and UVI on colour of indicator field Measurements of the temperature dependence of the discolouration of the index field were made in a climatic exposure test cabinet (Vötsch VT 4021) at air temperatures between 0 $^{\circ}$ C and 45 $^{\circ}$ C. Table 3 shows that there is a temperature dependence of the discoloration of the indicator field for all tested cards. The lower the ambient temperature, the more intense is the discoloration at the same UV index. Trials with varying UVI showed that the ambient temperature has a stronger impact on the discoloration of the indicator field than the UVI. At high UVI (\geq 8) and high temperatures (> 30 °C) the colour of the indicator field does not correlate well with the UV exposure, as the colour of the indicator field gradually fades due to the increasing temperatures. **Table 3.** Colour of the indicator fields for different environment temperatures at an UVI of 5 (artificial UVR). | UVI | Temp. | discolouration of indicator field, RGB coordinates, shades of grey | | | | | |-----|-------|--|--------------------|-------------|--------------------|-------------| | 5 | 0°C | 100/53/83 | 192990/134
1925 | 178/94/126 | 195/137/165
157 | 126/154/147 | | 5 | 20°C | 110/81/106
92 | 192/127/146 | 182/130/140 | 174/131/156
158 | 166/189/175 | | 5 | 40°C | 114/94/113 | 272/148/173
172 | B5/139/151 | 208/163/178
178 | 171/192/170 | #### Reproducibility and stability When several cards of the same type are exposed to UV-radiation at the same time under the same conditions, the colours of the indicator fields do not differ noticeably from each other. Even with software analysis, no remarkable differences were found in the discoloration. Only one card type was tested for stability. When this card type was continuously exposed to UV radiation, the discoloration properties of the indicator field slowly began to change. Therefore, to increase the stability of the card continuous exposures of the cards should be prevented. #### **Conclusions** From the observed properties of the cards, the following apply to the practical use of these cards. - At low ambient temperatures the tested UV indicator cards tend to overestimate the potential hazard; at higher temperatures they underestimate it. - Due to the spectral sensitivity of the cards the potential hazard of the UV emitted by the sun is overestimated in the morning, in the late afternoon and in spring and autumn. - The highest overestimation of the erythemal hazard occurs at low environmental temperatures and with a low ratio of UVB in the radiation; conditions which are correlated with the time of day (morning) and the season (spring). - The highest underestimation of the potential hazard will occur at high temperatures and with UVB dominating sources. In summary, the application of the tested cards is limited as they might not give an appropriate estimation of the potential hazard due to their observed properties. #### References Parry, H.; Corns, N.; Towns, A.; Robinson, J. 2003. New uses for photochromics. Speciality Chemicals Magazine. WHO (World Health Organization) 2002. Global solar UV Index: a practical guide. WHO. CIE (International Commission on Illumination) 1987. A reference action spectrum for ultraviolet induced erythema in human skin. CIE J. 6: 17–22 6182 # UV radiation and its effects - an update 2006 Report of the NIWA UV Workshop Hutton Theatre, Otago Museum Dunedin 19–21 April, 2006 RSNZ Miscellaneous series 68