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Beam Propagation Hazard Calculations for Telescopic Viewing of Laser Beams 
Ulfried Grabner, Georg Vees and Karl Schulmeister, ARC Seibersdorf research, A-2444 Seibersdorf, Austria 
 
 
 
ABSTRACT 
We have performed beam propagation calculations which can be used to characterize the retinal spot size of 
laser beams for telescopic viewing. The results show that the minimal retinal spot size produced on the retina by 
using a telescope compared to that of the naked eye is increased at least by a factor that is equal to the 
magnifying power of the telescope and an increase of C6 (or CE) is applicable. 
 
The hazard evaluation method used is based on the calculation of the maximum level of thermal hazard that is 
defined as the ratio of the power that enters the eye and the retinal spot diameter. Beam propagation principles 
were used to calculate the distance between the beam waist and the eye lens that provides the maximum hazard. 
The only two input parameters necessary for these calculations are the waist diameter and the far-field 
divergence of the beam. The beam width on the retina at the most hazardous viewing distance is consequently 
used to determine the angular subtense of the apparent source that is needed to calculate the MPEs and AEL 
values. Both the angular subtense of the apparent source and the most hazardous viewing distance have been 
calculated for a wide range of beam waist widths and far-field divergences.  
 
1. INTRODUCTION 
The correction factor C6 that is contained in the MPEs for retinal thermal injury characterises that the hazard 
from extended sources is lower than from collimated laser beams or other point sources.1,2 The factor C6 
depends on the plane angle α subtended by the diameter of the retinal image at the lens of the eye and measured 
in mrad. This angle is equivalent to the size of the image on the retina and this in turn is directly related to the 
source size as shown in figure 1. In the safety standards, a minimal angular subtense, αmin, is defined as 
1.5 mrad, an angle that corresponds to a retinal diameter of 25 µm for a focal length of the eye of 17 mm. 
 

 
 

Figure1: The angular subtense α of an object 
 
For laser radiation the angular subtense α of a source is often referred to as the apparent source size, to denote 
that it is not related to the physical dimension of the emitter such as the beam diameter or the exit mirror. The 
size and location of the apparent source, which is defined as the real or virtual object that forms the smallest 
possible retinal image by eye focusing 2, can be thought of as the size and the location of a conventional source, 
which leads to the same image size on the retina.  As the angular subtense of the apparent source is directly 
related to the diameter of the irradiated area on the retina, together with the energy or power which is passing 
through the pupil and is incident on the retina these two parameters determine the exposure or irradiance at the 
retina. Generally, for a given energy or power, an increase in image size reduces the retinal exposure (J/m2) and 
consequently decreases the injury potential.  
The correction factor C6 is defined in the IEC 60825-1 and ANSI Z136.1 as being the ratio of the angular extent 
α of the apparent source to αmin: 
 

6
min

C α
α

=               (1) 

 
C6 is limited to values between 1 and 66.67, as for α greater 100 mrad the dependence of the heat flow on the 
image size does no longer apply and the limit could be expressed as constant radiance limit, which is reflected 
by setting the image size constant as well as by specifying a field of view of 100 mrad for the irradiance 
measurement, which limits the measured part of the source to 100 mrad.  
Based on the dependence of the thermal retinal MPE on α, we have developed a beam propagation model to 
characterize the hazard from exposure to laser beams while using 7 x 50 binoculars.  
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2. THERMAL HAZARD 
Following the linear dependence of thermal injury on the angular subtense of the source, which is again a linear 
function of the image diameter on the retina, the quantity that describes the level for thermal hazard, is the beam 
power or energy that falls on the retina divided by its width at the retina. Since, for a given wavelength, the 
beam power that is incident on the retina is proportional to the power that enters the eye Pr (in the sense of the 
part of the power in beam that is incident on the eye and that passes through the pupil, usually referred to as 
intraocular power), the calculations are based on this value. The thermal hazard H can then be defined as: 
 

r

r

PH
d

=                (2) 

 
where dr is the width or the diameter of the beam at the retina. Following the concept developed by Brooke 
Ward, the maximum hazard for retinal damage is found by maximizing the parameter H. 3 
 
3. HUMAN EYE MODEL 
Refraction in the eye takes place mostly at the cornea whereas the eye lens serves the purpose of focusing 
(accommodation). The range of accommodation of the eye varies greatly from one person to another and in each 
person, with age. It is maximum for young people and reduces by age. 4 
The eye model used in this analysis consists of a single thin lens with a variable focal length, combining the 
refraction on the cornea and the eye lens, and a fixed lens to retina spacing of 17 mm. Although this is a strong 
simplification, it describes the complexity of the eye in a sufficient manner. To consider the accommodation 
range of most people, a standard eye is used having a focal length in a range of fe,min = 14.53 mm to 
fe,max = 17 mm, giving a minimum and maximum focusable distance of 100 mm and infinity, respectively. The 
pupil diameter in this eye model is fixed to 7 mm. 
 
4. BEAM PROPAGATION 
The propagation of an ideal TEM00 beam in free space is described by the following equations: 
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where w0 (z) is the beam radius within which 86.46% of the total energy/power is enclosed and the intensity has 
reduced to 1/e2 of the peak intensity, ww is the beam waist radius, R(z) is the curvature of the wave front at 
distance z, zR is the Rayleigh length, λ is the wavelength of the radiation and θ  the far-field divergence. 

  
 

Figure 2. Characteristics of a gaussian beam 
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                                             Figure 3: Radial intensity distribution of gaussian beam 

 
The TEM00 beam is only the lowest-order solution in free space. In general, a laser beam consists of further 
higher modes. In this case the equations 3, 4, 6 and 7 are still applicable, but the formula for the Rayleigh length 
has to be modified to 
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M2 is the beam propagation ratio, which is defined using an invariant of propagation that is not changed by any 
linear, diffraction limited optical system: the product of the beam waist radius ww and the far-field divergence. 
M2 is defined as the ratio of the value of this invariant for the real beam to its value for a TEM00 beam of the 
same wavelength. M2 is equal to 1 for TEM00 beams and greater than 1 for higher order modes.5 
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4.1 Transformation of a gaussian beam by any diffraction limited optical system 
To describe the propagation of a laser beam through any optical system the complex beam parameter q(z) was 
used, which for a TEM00 beam is defined as. 6 
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q(z) is a complex function and part of the lowest-order solution of the paraxial Helmholtz equation  
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for the complex field amplitude 
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of a rotationally symetric electrical field  
 

( ) ( ), ikzE r U r z e−= ⋅


           (13) 
 
The relation between the complex functions q(z) and p(z) can be derived by inserting Equ. 12 into Equ. 11 
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Inserting Equ. 10 into Equ. 12 gives the solution for the electrical field of a TEM00 beam 
 

 [ ]2 2 2
0 ( )( ) 2 ( )( , , ) i kz p zr w z ik r R zE x y z E e e e− +− − ⋅ ⋅= ⋅ ⋅ ⋅          (15) 

 
where  
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  is the longitudinal phase factor of the gaussian wave. 
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As the wave front at the beam waist is planar (R( z = 0) → ∞), a beam waist is assumed to be located at z = 0. 
Considering  
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the complex beam parameter of the beam waist can be evaluated: 
 

2
w

w R
wq i i zπ
λ
⋅

= ⋅ = ⋅            (17) 

 
Integrating Equ. 14 gives the complex beam parameter  
 

( ) w Rq z z q z i z= + = + ⋅            (18) 
 
q(z) is a linear function of z and transforms in the same way as the radius of curvature of spherical waves 
coming from a point source 
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where q1 is the complex beam parameter at z = z1, q2 is the complex beam parameter at z = z2 and  
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is the matrix of the optical system. 
 
4.1.1 Transformation of a gaussian beam by a thin lens 
Assuming a gaussian beam with a waist radius ww1 at z = 0 in front of a thin lens, that has a focal length f and is 
located at z = d1, leads to figure 4: 

 

 
Figure 4: Transformation of a gaussian beam by a thin lens 
 
To obtain the complex beam parameter q2 = q ( z = d1 + d2 ) at the distance d2 behind the lens the matrix M 
has to be evaluated 
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into Equ. 19 the following equation for q2 can be found: 
 

( ) ( )2
1 11 1

2 1 2 2 2 2 2
1 1

R RR R

R R

ACz BD i z AD BCi Az B BD i zq d d
i Cz D C z D D

+ + ⋅ −⋅ + + ⋅
+ = = = =

⋅ + +
 

 
                   22 1 1 2 1 1

1 1 2 1 2 1

22
2 1

1

1 1
1 1 1 1 1 1

1
1

R R

R

d d d d d d
z d d i d d z

f f f f f f f f

d
z

f f

− ⋅ ⋅ + − − ⋅ − ⋅ − + ⋅ − ⋅ − − − − ⋅ − ⋅

=

⋅ + −

              
              
              

   
   
   

   (23) 

 
Assuming that a new beam waste with radius ww2 is formed at z = d1 + d2w results in 
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Solving Equ. 25 leads to d2w as a function of d1, zR1 and f: 
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Inserting d2w into Equ. 23 gives zR2 and ww2: 
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4.1.2 Transformation of a gaussian beam by a telescope 
The beam propagation model was developed for an astronomical refracting telescope that consists of two 
convergent lenses. The results of the simulation are however also applicable to a binocular with corresponding 
focal lengths. In the normal state of adjustment the second focal plane of the first lens (the objective), coincides 
with the first focal plane of second lens (the eyepiece), so that an incident pencil of parallel rays emerges as a 
parallel pencil. 4 
For the calculations, the waist of a gaussian beam with a waist radius ww1 is assumed to be at z = 0. The 
objective of the telescope with a focal length f1 is located at z = d1 at a distance f1 + f2 in front of the eyepiece 
with a focal length f2. To receive the complex beam parameter q2 = q ( z = d1 + f1 + f2 + d2 ) at distance d2 
from the lens the matrix M has to be calculated 
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Doing calculations similar to that done in the case of the thin lens d2w can be evaluated as a function of d1, f1 
and f2: 
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It should be noted that d2w does not depend on zR1, and has a maximum for d1 = 0 which is equal to the distance 
between the exit pupil and the eyepiece. d2w can also be negative, creating a virtual beam waist inside the 
telescope: 
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Note that the radius of the beam waist produced by the telescope is not a function of d1 and depends only on the 
ratio of f1 and f2, which is defined as the magnifying power of the telescope. 
 
Equ. 26, 27, 28, 29 and Equ. 31, 33, 34 have been derived considering a TEM00 beam. Again in case of a real 
laser beam these equations will still be applicable, if the formula for the Rayleigh length is modified to 
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5. DETERMINATION OF THE MINIMAL RETINAL SPOT SIZE 
The eye model used in the following analysis consists of a single thin lens with a variable focal length and an 
image plane (retina) fixed behind the lens at a constant distance of de = 17mm from the lens. This case seems 
quite similar to that of a single thin lens with a fixed focal length producing a beam waist in a distance that can 
be determined by Equ. 26. Hence one could presume that the minimal spot size is a beam waist that is located at 
the retina, but this is not the case. In general, to produce a minimal spot size on the retina, a beam waist is 
formed in a very short distance in front of the retina, resulting in a lens focal length that is different to that 
forming a beam waist on the retina. 
 
To minimize the spots size on the retina an equation for the beam propagation behind the eye lens has to be 
derived. Taking into account that the new beam waist is located at the position z = d1 + d2w, Equ. 26 and 
Equ. 29 can be inserted into 
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By setting z´= z – d1, the beam radius behind the eye lens can be evaluated as a function of the distance from the 
eye lens. 
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Minimizing Equ. 36 for given values of ww1, d1 and z´= de = 17 mm gives us an equation for the eye focal 
length fme, that produces the minimal beam diameter on the retina 
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where R1( d1 ) is the radius of curvature of the input beam as a function of the distance d1 from its beam waist. 

  (32) 
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If fme is within the eye accommodation range the minimal spot size obtainable by eye focusing is 
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where w01( d1 ) is the radius of the input beam at the lens:  
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Hence the beam radius behind the lens as a function of the distance z´ from the lens can be calculated with 
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It should be noted that as long as the eye is able to accommodate, two different gaussian beams with equal 
wavelengths and the same beam diameters on the lens are transformed to identically propagating beams behind 
the eye lens, however, the eye focal length is different in each case. 
 
So far, the calculations did not take into account that the focal length fme has to be within the accommodation 
range of the eye. As it can be seen in Equ. 36 the spot radius on the retina we ( fe ) as function of the eye focal 
length has only one minimum at fe = fme. Consequently it is an increasing function for fe > fme and a decreasing 
function for fe < fme. Therefore in the case of fme < fe,min = 14.53 mm the minimum spot radius achievable by 
eye focusing is obtained with fe = fe,min whereas in the case of fme > fe,max = 17 mm the minimum spot radius is 
obtained with fe = fe,max. 
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5.1. Minimal retinal spot size in case of telescopic viewing 
The telescope used in the following calculations is an astronomical refracting telescope with a focal length of 
the objective of f1 = 14 cm, a focal length of the eyepiece of f2 = 2 cm and a distance between the two lenses of 
 dT=  f1 + f2 = 16 cm, providing a magnifying power of 7. For these calculations the diameter of the lenses are 
not relevant. To obtain the minimal spot size on the retina in case of using a telescope, Equ. 31, 33 and 34 have 
to be combined with Equ. 41. In addition it has to be taking into account that the eye lens is located at the exit 
pupil of the telescope at a distance dEP= f2∙( f1 + f2 ) / f1  behind the eyepiece, to ensure that all the light 
entering the objective at different off-axis angles will reach the eye.  
 
Figure 5 shows the minimal spot size of the naked eye wme for a number of beams with a common waist radius 
of 1 mm in comparison to that produced on the retina by using the telescope wT

me for distances d between the 
input beam waist and the position of the objective up to 30 m. At large distances the ratio wT

me / wme converges 
to 7, the value of the magnifying power of the telescope, whereas if d becomes smaller, the ratio at first reaches 

if  fme < fe,min = 14.53 mm 

if 14.53 mm ≤ fme ≤ 17 mm 

if  fme > fe,max = 17 mm 
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a maximum to decrease again for even closer distances to a value of almost 7 for d = 0. It has to be 
reemphasised, that the ratio is always bigger than 7. 
 

 
                             Figure 5: Ratio wT

me  / wme  of the minimal retinal beam radii with and without telescopic viewing 

 
6. MAXIMUM THERMAL HAZARD, MOST HAZARDOUS DISTANCE AND ANGULAR SUBTENSE 
Assuming a gaussian power distribution, we obtain the following expression for the power P(u) transmitted 
through a pupil with diameter u 
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where Ptot is the total beam power and w0 is the 1/e2 beam radius at the pupil. 
It should be mentioned that the use of Equ. 42 in the following calculations will overestimate the level of hazard 
as the gaussian distribution provides the greatest threat compared to other distributions and as effects of 
diffraction on the beam diameter at the pupil are neglected.3 
 
6.1 Naked eye 
In the case of the human eye the pupil diameter is 7 mm. If a laser with a certain beam diameter and far-field 
divergence moves away from the eye, the diameter on the lens increases reducing the transmitted power incident 
on the retina. At the same time the minimal spot size on the retina decreases and there is a certain distance 
where the thermal hazard H becomes a maximum. This distance can be referred to as the most hazardous 
viewing distance. To obtain the corresponding angular subtense, the 1/e spot diameter at the retina has to be 
divided by the lens-to-retina spacing. For the naked eye, the most hazardous distance and the corresponding 
angular subtense have been calculated by Brooke Ward for a large range of beam characteristics. Beams with a 
far-field divergence up to 400 mrad and waist widths up to 6 mm have been analysed to reveal the locations of 
the peak hazard as well as the value of the beam width at the retina at that viewing condition. One of the results 
was that there exists a range of low divergence beams where the most hazardous viewing distance is 
significantly greater than the standard of 100 mm. In contrast to this there are also some high divergence source 
conditions that represent the highest hazard when placed closer than 100 mm from the eye, despite the eye is 
outside its accommodation range.3 
 
6.2 Telescope  
In the case of using a telescope it has to be taken into account that there is another aperture at the objective and 
at the eyepiece, which additionally truncates the input beam. Considering this, the power entering the eye can be 
evaluated with 
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        (43) 

 
where DOB , wOB,0 , DEP , wEP,0 , DEL and wEL,0 are the radii of and the 1/e2 beam radii at the objective, the 
eyepiece and the eye pupil, respectively. 
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The telescope used in the following analysis has an objective focal length of f1 = 14 cm, a focal length of the 
eyepiece of f2 = 2 cm and a distance between the two lenses of  dT=  f1 + f2 = 16 cm, as in the calculations for 
figure 5. While the objective diameter has to be 50 mm to ensure an exit pupil of the same size as the eye pupil, 
the diameter of the eyepiece was chosen to be 25 mm.  
The most hazardous viewing distance and the corresponding angular subtense were calculated for telescopic 
viewing of a laser beam. To account for a minimal 1/e beam diameter of 25 µm on the retina, the beam diameter 
was restricted to that value during the entire evaluation. The results are shown in the figures 6, 7, 8 and 9. 
 

1 50100150200
250

300
350

400

2

4

6

8

10

12

14

16

1
2

3
4

5
6

dMHV [m]

beam waist d
iameter [m

m]far field divergence [mrad]       

5

1

0,9

0,8

0,7

0,6

0,5

0,40,4

0,3

50 100 150 200 250 300 350 400
1

2

3

4

5

6

 

 

far field divergence [mrad]

be
am

 w
ai

st
 d

ia
m

et
er

 [m
m

]

 
 
 
 

As it can be seen in figures 6 and 7, the most hazardous viewing distance as well as the relaxation factor C6 
mainly depend on the far-field divergence. For beams with a far-field divergence of more than 50 mrad the most 
hazardous viewing distance lies between 22 cm and 1 m. That means that the beam waist is located close to the 
objective of the telescope. If the far-field divergence becomes smaller than 50 mrad the most hazardous viewing 
distance rapidly increases up to a value of about 15 m for a beam with a very low divergence and a small waist 
diameter. This is because the power transmitted through the telescope and the eye pupil decreases much less 
than the spot size on the retina. 
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50 mrad also marks a significant border line in figures 8 and 9. All beams with a far-field divergence of more 
than 50 mrad produce beam diameters at the retina that correspond to an angular subtense equal or even bigger 

Figure 9: Contours of the angular subtense of the apparent source 
as a function of the waist diameter and divergence of a beam 

Figure 8:  Thermal Relaxation factor C6 as a function of the 
waist diameter and divergence of a beam 
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Figure 7: Contours of the most hazardous viewing distance dMHV [m] 
as a function of the waist diameter and divergence of the beam 

Figure 6: Most hazardous viewing distance dMHV as a function 
of the waist diameter and divergence of the beam 
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than the maximum αmax = 100 mrad whereas the angular subtense for beams with a far-field divergence between 
1 mrad and 50 mrad does not exceed 7 mrad. 
 
7. CONCLUSIONS 
The calculations presented above show that the minimal retinal spot size produced on the retina by using a 
telescope compared to that of the naked eye is increased by a factor that is at least equal to the magnifying 
power of the telescope.  
In addition it could be demonstrated that even in the case of telescopic viewing, the angular subtense of the 
apparent source can be obtained by the knowledge of the waist diameter and the far-field divergence of the 
beam. The analysis of the most hazardous viewing distance and the corresponding angular subtense included a 
wide range of beam waist diameters (1 mm to 6 mm) and far-field divergences (1 mrad to 400 mrad) covering 
beam propagation ratios M2 up to 3000. It was shown, that both the most hazardous viewing distance and the 
angular subtense are primarily functions of the far-field divergence. The computations reveal that all beams with 
a field divergence of more than 50 mrad have an angular subtense of αmax = 100 mrad whereas the angular 
subtense for beams with far-field divergences between 1 mrad and 50 mrad does not exceed 7 mrad. The 
analysis also indicates that the most hazardous viewing distance for beams with a field divergence above 
50 mrad is less than 1 m.  
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